

Journal of Alloys and Compounds 404-406 (2005) 559-564

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Process and mechanism of hydrogen-induced amorphization in C15 Laves phases RFe₂

K. Aoki^{a,*}, H.-W. Li^b, K. Ishikawa^a

^a Department of Materials Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan ^b Graduate School of Kitami Institute of Technology, Japan

Received 8 September 2004; received in revised form 4 January 2005; accepted 11 January 2005 Available online 14 July 2005

Abstract

The pressure dependence of structural changes in C15 Laves phase DyFe₂ was investigated using a pressure differential scanning calorimeter (PDSC) at 0.1–5.0 MPa H₂ and compared with that of ErFe₂ and CeFe₂. By thermal analysis of DyFe₂, four exothermic peaks of hydrogen absorption, hydrogen-induced amorphization (HIA), the precipitation of BiF₃-type DyH₃ and the decomposition of the amorphous hydride were observed above 0.5 MPa H₂, although tri-hydride DyH₃ takes usually the HoH₃-type structure. HIA overlapped with the precipitation of DyH₃ at 0.2 MPa H₂, but *c*-DyFe₂H_x decomposed directly into α -Fe and DyH₃at 0.1 MPa H₂. Hydrogen absorption, HIA, and the decomposition of *a*-DyFe₂H_x showed a negative pressure dependence, but the precipitation of DyH₃ showed a positive one. As a result of such dependence, HIA does not occur at lower hydrogen pressure. The structural changes of ErFe₂were similar to that of DyFe₂. On the other hand, hydrogen absorption and HIA occurred simultaneously for every hydrogen pressure in CeFe₂. The mechanism of HIA in the C15 Laves phases RFe₂ was discussed on the basis of the experimental results.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Hydrogen absorption; Transformation; Amorphous; Amorphization; Crystallization

1. Introduction

Since unique properties of amorphous alloys prepared by rapid quenching are lost by crystallization on heating, crystallization of amorphous alloys has extensively been investigated so far. On the other hand, it has been reported that some crystalline hydrides transform to amorphous ones on heating in a hydrogen atmosphere, which is called hydrogen-induced amorphization (HIA) and a reverse reaction to crystallization. HIA is closely related to the disproportionation reaction that dominates a lifetime of hydrogen storage alloys, so that it is important to make clear the controlling factors of HIA. HIA has been observed in the intermetallic compounds A_xB_{1-x} consisting of hydride forming (A) and non-hydride forming metals (B) with the crystal structures such as C15, B8₂, C23, D0₁₉ and L1₂ [1–15]. Among these, structural changes in the C15 Laves phases RFe_2 (R = rare earth metals) are particularly interesting, because both a crystalline and an amorphous hydride form depending on the hydrogenation temperature [12]. One of the present authors (Aoki) investigated hydrogen-induced structural changes in C15 Laves phases AB₂ and demonstrated that HIA occurs in the compounds having the atomic size ratio larger than 1.37 [16]. Recently, the present authors have shown that C14 Laves phase NdMn₂ with the atomic size ratio $R_{Nd}/R_{Mn} = 1.45$ amorphizes also by hydrogenation [17]. Furthermore, it has been reported that structural changes in C15 Laves phases RFe2 depend on the kind of R [12,13]. That is, hydrogen absorption, HIA, the precipitation of RH3 and the decomposition of the remaining amorphous phase occur in RFe_2 (R = Sm, Gd, Tb, Dy and Ho). On the contrary, hydrogen absorption and HIA occur simultaneously in CeFe₂ [18], while HIA and precipitation of ErH₃ do simultaneously in ErFe₂ [15]. However, the mechanism of HIA in the C15 Laves phases is still uncertain. It is important and useful to investigate formation conditions of

^{*} Corresponding author. Tel.: +81 157 26 9452; fax: +81 157 26 9452. *E-mail address:* aokiky@mail.kitami-it.ac.jp (K. Aoki).

 $^{0925\}text{-}8388/\$$ – see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2005.01.121

amorphous hydrides in order to elucidate the mechanism of HIA.

In the present work, the pressure dependence of structural changes in C15 Laves phase $DyFe_2$ is investigated using PDSC and compared with that of $ErFe_2$ and $CeFe_2$. The mechanism of HIA in the C 15 Laves phases RFe_2 is discussed on the basis of the experimental results.

2. Experimental

DyFe₂ was prepared using high purity metals by arc melting in a purified argon atmosphere and homogenized at 1073 K for 1 week in an evacuated quartz tube. After homogenization, the ingot was crushed into 100 mesh and thermally analyzed using a pressure differential scanning calorimeter (PDSC) in a hydrogen atmosphere of 0.1-5.0 MPa. The alloy was heated to typical stages in PDSC, followed by rapid cooling to room temperature. Subsequently, it was subjected to powder X-ray diffraction (XRD) and conventional DSC (Ar-DSC) heated at a rate of 0.67 K/s in a flowing argon atmosphere. Some samples were further examined in a transmission electron microscope (TEM). The thermal desorption spectrum (TDS) of hydrogen and the amount of desorbed hydrogen were measured by heating the sample at a rate of 2 K/s in an argon atmosphere by a hydrogen analyzer.

3. Results and discussion

3.1. Structural changes of DyFe₂ on hydrogenation and conditions of HIA

Fig. 1 shows typical PDSC curves of DyFe₂ and the change of the hydrogen content (H/M) heated at the rate of 0.17 K/s. The PDSC curves of DyFe₂ heated at 1.0, 0.2 and 0.1 MPa H₂ show four, three and two exothermic peaks, respectively.

Figs. 2 and 3 show XRD patterns and Ar-DSC curves of DyFe₂ heated to above the respective exothermic peaks at

Fig. 1. PDSC curves of $DyFe_2$ and the change in the hydrogen content (H/M) heated at 0.1, 0.2 and 1.0 MPa H₂ at the rate of 0.17 K/s.

Fig. 2. XRD patterns of DyFe₂ heated to above the respective stages of PDSC at the rate of 0.17 K/s at 1.0 MPa H_2 . The original sample (1), the sample heated to above the first peak (to 460 K) (2), the second peak (to 583 K) (3), the third peak (to 673 K) (4), and the fourth peak (to 773 K) (5).

Fig. 3. Ar-DSC curves for DyFe₂ after heating to above the respective stages of PDSC at a rate of 0.17 K/s and at 1.0 MPa H₂. The sample heated to above the first peak (to 460 K) (1), the second peak (to 583 K) (2), the third peak (to 673 K) (3), and the fourth peak (to 773 K) (4).

1.0 MPa H₂, respectively. The XRD pattern of the original sample indicates that this alloy is in the C15 Laves phase. The XRD pattern of the sample heated to above peak I (to 460 K) shows Bragg peaks indexed on the basis of a rhombohedral structure ($R\bar{3}m$). The bright field image (BFI) of TEM for this sample shows crystalline microstructure and the corresponding selected area diffraction pattern (SADP) shows a highly strained rhombohedral structure [20]. Its Ar-DSC curve does not show any exothermic peak of crystallization. Its hydrogen content is 1.48 (H/M). Consequently, the first exothermic peak results from the formation of a crystalline hydride *c*-DyFe₂H_{4.4}.

The Bragg peaks disappear and are replaced by a broad maximum in the sample heated to above peak II (to 583 K). BFI for this sample is featureless and its SADP shows a broad halo characteristic of the amorphous structure. The Ar-DSC curve of this sample shows an exothermic peak of crystallization at around 900 K. The hydrogen content is reduced to 1.13 (H/M). These experimental results imply that the second exothermic peak results from the transformation from c-DyFe₂H_{4.4} to a-DyFe₂H_{3.4}, i.e., hydrogen-induced amorphization (HIA).

Broad and weak Bragg peaks of BiF₃-type DyH₃ appear overlapped with a broad maximum in the sample heated to above peak III (to 673 K). BFI shows crystalline particles embedded in the amorphous matrix and its SADP shows Debye– Scherrer rings of BiF₃-type DyH₃ overlapped with a broad halo. The Ar-DSC curve of this sample shows an exothermic peak of crystallization at around 800–900 K. From these experimental results, we can see that the third exothermic peak results from the precipitation of BiF₃-type DyH₃in *a*-DyFe₂H_x.

The XRD pattern of the sample heated to above peak IV (to 773 K) is indexed on the basis of α -Fe and BiF₃-type DyH₃. Dark particles can be observed in BFI for this sample and the Debye–Scherrer rings indexed on the basis of α -Fe and BiF₃-type DyH₃ are observed in its SADP. Its Ar-DSC curve does not show any exothermic peak of crystallization. The hydrogen content of this sample is 1.08 (H/M), i.e., 3.24 (H/Dy). Consequently, the fourth exothermic peak results from the decomposition of the remaining amorphous hydride into α -Fe and DyH₃. The reaction sequence of DyFe₂ heated at 1.0 MPa H₂ is summarized as follows.

$$c\text{-}\mathsf{DyFe}_{2} \xrightarrow{\operatorname{Peak} \mathrm{I}} c\text{-}\mathsf{DyFe}_{2}\mathrm{H}_{x} \xrightarrow{\operatorname{Peak} \mathrm{II}} a\text{-}\mathsf{DyFe}_{2}\mathrm{H}_{x} \xrightarrow{\operatorname{Peak} \mathrm{III}} a$$
$$a\text{-}\mathsf{Dy}_{1-y}\mathrm{Fe}_{2}\mathrm{H}_{x} + \mathrm{DyH}_{3} \xrightarrow{\operatorname{Peak} \mathrm{IV}} \alpha\text{-}\mathrm{Fe} + \mathrm{DyH}_{3} \tag{1}$$

The PDSC curve of DyFe₂ heated at 0.2 MPa H₂ shows three exothermic peaks. The first and the third exothermic peaks result from hydrogen absorption and the decomposition of the *a*-DyFe₂H_x into α -Fe and DyH₃, respectively, in the same way as 1.0 MPa H₂. On the other hand, the XRD pattern of the sample heated to above the second exothermic peak shows the Bragg peaks of BiF₃-type DyH₃ overlapped with a broad maximum. Its Ar-DSC curve shows the broad exothermic peak of crystallization. These experimental results imply that the second exothermic peak results from the simultaneous occurrence of HIA and the precipitation of BiF_3 -type DyH_3 . The reaction sequence of $DyFe_2$ heated at 0.2 MPa H_2 is expressed as follows.

$$c \text{-DyFe}_{2} \xrightarrow{\text{Peak I}} c \text{-DyFe}_{2} H_{x} \xrightarrow{\text{Peak II}} a \text{-Dy}_{1-y} \text{Fe}_{2} H_{x}$$
$$+ \text{DyH}_{3} \xrightarrow{\text{Peak III}} \alpha \text{-Fe} + \text{DyH}_{3}$$
(2)

The PDSC curve of DyFe₂ heated at 0.1 MPa H₂ show two exothermic peaks. The first exothermic peak results from the formation of *c*-DyFe₂H_x. The XRD pattern of the sample heated to above peak II (to 714 K) is indexed on the basis of α -Fe and BiF₃-type DyH₃. BFI of this sample shows the lattice image and its SADP shows Debye–Scherrer rings indexed on the basis of α -Fe and BiF₃-type DyH₃. The Ar-DSC curve of this sample does not show any exothermic peak of crystallization. The hydrogen content of this sample is 1.36 (H/M), which is the same as that of the sample heated at 0.2 MPa H₂. Consequently, the second exothermic peak results from the direct decomposition of *c*-DyFe₂H_{4.1} into α -Fe + DyH₃. No amorphous hydride is detected under the present experimental conditions. The reaction sequence of DyFe₂ heated at 0.1 MPa is expressed as follows.

$$c$$
-DyFe₂ $\xrightarrow{\text{Peak I}} c$ -DyFe₂H_x $\xrightarrow{\text{Peak II}} \alpha$ -Fe + DyH₃ (3)

Fig. 4 shows the relation between the peak temperatures T_p for the thermal reactions and the hydrogen pressure. T_p for hydrogen absorption, HIA, and the decomposition of the *a*-DyFe₂H_x show a negative pressure dependence, but T_p for the precipitation of DyH₃ shows a positive one. Also, the extrapolated line connecting T_p for HIA intersects the extrapolated line connecting T_p for the precipitation of DyH₃. HIA and the precipitation of DyH₃ occur simultaneously at about 0.2 MPa H₂. At the hydrogen pressure below the intersecting point,

Fig. 4. The peak temperatures T_p of the thermal reactions of DyFe₂ for two heating rates of 0.17 K/s (the solid symbol and the solid line) and 0.33 K/s (the open symbol and the broken line) plotted against the hydrogen pressure. The solid hexagon denotes that HIA and the precipitation of BiF₃-type DyH₃ occur simultaneously. The pentagram indicates the direct decomposition of the crystalline hydride.

 $T_{\rm p}$ for HIA is higher than that for the precipitation of DyH₃, which implies that *a*-DyFe₂H_x is unstable. Then, *c*-DyFe₂H_x decomposes directly into α -Fe and DyH₃at 0.1 MPa H₂. The reduced peak temperature (the peak temperature/the melting point of DyFe₂) $T_{\rm p}/T_{\rm m}$ for hydrogen absorption, HIA, the precipitation of DyH₃ and the decomposition of *a*-DyFe₂H_x are 0.28, 0.36, 0.43 and 0.48, respectively. These values are related with the diffusion of the metallic atoms as discussed later.

The relation between T_p and the hydrogen pressure for $ErFe_2$ is similar to that for DyFe₂ [19]. That is, T_p for hydrogen absorption, HIA and the decomposition of a-ErFe₂H_x into α -Fe + ErH₃ show a negative pressure dependence, but $T_{\rm p}$ for the precipitation of BiF₃-ype ErH₃ shows a positive one. On the contrary, hydrogen absorption and HIA occur simultaneously in CeFe2 independent of the hydrogen pressure [18]. T_p for HIA and the decomposition of *a*-CeFe₂H_x show a negative pressure dependence, while T_p for the precipitation of CeH₃ shows a positive one. For every R, T_p for hydrogen absorption, HIA and the decomposition of a-RFe₂H_x show a negative pressure dependence, although hydrogen absorption and HIA occur simultaneously in CeFe2, which implies that these reactions are controlled by the diffusion of hydrogen or R that interacts with hydrogen. On the contrary, T_p for the precipitation of BiF3-type RH3 shows a positive pressure dependence. This pressure dependence is very strange, because the increment of the hydrogen pressure usually enhances the diffusion of hydrogen. Thus, it is considered that the precipitation of BiF₃-type RH₃ is controlled by the diffusion of Fe that does not interact with hydrogen. In the work published on CeFe₂H_x [18] and ErFe₂H_x [19], the authors had attributed the respective PDSC peaks to the precipitation and the decomposition of Ce(Er)H₂ and not to that of Ce(Er)H₃. Now, in the present work, the authors interpret the corresponding peaks as due to the (cubic BiF₃-type) tri hydride DyH₃ on the basis of the hydrogen content. In the previous papers, the authors were misled in their interpretations, because they did not consider the hydrogen content of the hydrides. By reconsideration of it, the authors attribute the respective PDSC peaks to the precipitation and the decomposition of Ce(Er)H₃.

3.2. Structural changes on dehydrogenation

Fig. 5 shows TDS for the samples: (1) *c*-DyFe₂H_{4.4}, (2) *a*-DyFe₂H_{3.4}, (3) *a*-Dy_{1-y}Fe₂H_x + DyH₃, (4) α -Fe + DyH₃ and (5) HoH₃ -type DyH₃ prepared by hydrogenation of Dy. TDS for *c*-DyFe₂H_{4.4} shows sharp and overlapping peaks in the range 500–650 K, which indicates that all of the hydrogen is desorbed from this sample in the crystalline state. On the other hand, TDS for *a*-DyFe₂H_{3.4} shows a small and sharp peak, at around 500 K, which is gradually weakened with increasing temperature. This peak indicates that some of hydrogen in *a*-DyFe₂H_{3.4} is trapped in sites similar to those of *c*-DyFe₂H_{4.4}. The spectrum between 600 and 800 K (the shadowed part) implies that some of hydrogen atoms are

Fig. 5. TDS, heated at the rate of 2 K/s using a hydrogen analyzer in an argon atmosphere, for the samples: (1) *c*-DyFe₂H_{4.4}, (2) *a*-DyFe₂H_{3.4}, (3) a-Dy_{1-y}Fe₂H_x + DyH₃, (4) α -Fe + DyH₃ and (5) for Dy hydride prepared by hydrogenation of Dy at room temperature in 5 MPa H₂ for 86 ks.

trapped more tightly than those in *c*-DyFe₂H_{4.4}, which becomes the driving force for HIA. On the other hand, TDS for this sample shows a broad peak at about 1100–1300 K, which is due to hydrogen desorption from CaF₂-type DyH₂. TDS for *a*-Dy_{1-y}Fe₂H_x + DyH₃ is similar to that for *a*-DyFe₂H_{3.3} because of the similarity of chemical compositions of both phases.

3.3. Crystal structures of *R* hydride precipitated in the amorphous hydride

Fig. 6 shows XRD patterns of (a) the Dy hydride (denoted by H) prepared by hydrogenation of Dy and subsequently heated to above the peaks of TDS and of (b) a mixture of α -Fe + Dy hydride (denoted by P) and subsequently heated to above the peaks of TDS. The hydrogen content (H/Dy) for these samples is shown in this figure. The XRD pattern of the Dy hydride (H) is indexed on the basis of HoH_3 -type DyH₃. The XRD patterns of this sample heated to above the first peak (to 973 K) and to above the second peak (to 1773 K) of TDS are indexed on the basis of CaF2-type DyH2 and pure Dy, respectively. Consequently, the first and the second peak of TDS are due to the transformation from HoH₃-type DyH_3 to CaF_2 -type DyH_2 and from CaF_2 -type DyH_2 to pure Dy, respectively. On the contrary, the XRD pattern of the Dy hydride (P) does not change on heating to above the first peak of TDS (to 973 K). Since the hydrogen content decreases from 3.21 to 2.25 (H/Dy), the Dy hydride (P) and the heated

Fig. 6. XRD patterns of (a) Dy hydride prepared by hydrogenation (1) and subsequently heated to 973 K (2), and 1773 K (3) in the hydrogen analyzer and of (b) a mixture of α -Fe + DyH₃(4) prepared by hydrogenation of the amorphous alloy and subsequently heated to 973 K (5) and to 1373 K (6).

samples are considered to be BiF_3 -type DyH_3 and CaF_2 -type DyH_2 , respectively. That is, the first and the second peak in TDS are due to the transformation from BiF_3 -type DyH_3 to CaF_2 -type DyH_2 and that from CaF_2 -type DyH_2 to pure Dy, respectively.

Next, we discuss why HoH₃-type DyH₃ is not formed, but BiF₃-type DyH₃ is formed by the precipitation and by the decomposition of a-DyFe₂H_x. When CaF₂-type DyH₂ transforms into HoH₃-type DyH₃ by hydrogen absorption, large structural changes of the host metal Dy must occur. On the contrary, CaF₂-type DyH₂ transforms into BiF₃type DyH₃ without a change in the crystal structure. CaF₂-type DyH₂ precipitated in a-DyFe₂H_x is surrounded by the amorphous hydride, so that its transformation into HoH_3 -type DyH₃ is hindered by it. Consequently, BiH₃type DyH₃ may be formed by the precipitation in the amorphous hydride and the decomposition of the amorphous hydride.

3.4. The mechanism of hydrogen-induced amorphization (*HIA*) *in C15 Laves RFe*₂

We discuss the mechanism of HIA in DyFe₂ on the basis of the pressure dependence of structural changes. At 0.28 $T_{\rm m}$, where no substantial diffusion of the metallic atoms occurs, hydrogen is absorbed forming *c*-DyFe₂H_x without structural change. When *c*-DyFe₂H_x is heated to above the second exothermic peak (to 583 K), i.e., to about 0.36 $T_{\rm m}$, where both Dy and Fe atoms can move over a short-range distance, HIA occurs so as to reduce the enthalpy. The driving force for HIA in C15 Laves phases RFe₂ is considered to be the enthalpy difference resulting from the different hydrogen occupation sites.

The nearest neighbor coordination numbers of Fe and Tb atoms around the D atom, N_{D-Fe}, and N_{D-Tb}, calculated from the area under the Gaussian peaks in the RDF(r)s, together with the interatomic distance, r_1 , for the Fe-D and Tb-D pair correlations, have been reported by us [21]. ND-Fe and ND-Tb for c-TbFe₂D_{3.8} are nearly 2 and the total number of them is 4, which indicates that the D atoms occupy tetrahedral sites consisting of 2Fe + 2Tb. Three kinds of tetrahedral sites exist, i.e. 2R + 2Fe, 1R + 3Fe and 4Fe in the C15 Laves phases [22]. Table 1 clearly shows that only 2R + 2Fe site is occupied by the D atoms. In contrast, it has been predicted that five kinds of tetrahedral sites exist, 4R, 3R + 1Fe, 2R + 2Fe, 1R + 3Fe, and 4Fe in the corresponding amorphous a-RFe₂. Among these sites, D may occupy 4R, 3R + 1Fe, 2R + 2Fe sites because of the large formation enthalpy of the rare earth metal hydride. The occupation of these sites was confirmed by the neutron diffraction analysis as follows. ND-Fe and ND-Tb for a-TbFe₂D_{3.0} is approximately 1 and 3, respectively, but the total number of them is still 4. These experimental results imply that the D atoms do not occupy only 3Tb + 1Fe tetrahedral sites, but occupy 4Tb, 3Tb+1Fe, 2Tb+2Fe sites in *a*-TbFe₂D_x. The reason is that if they occupy only 3Tb + 1Fesites, N_{D-Fe} and N_{D-Tb} for *a*-TbFe₂D_x must be independent of the D content. However, Table 1 shows that N_{D-Fe} and N_{D-Tb} for *a*-TbFe₂D_x is reduced to 0.62 and increased to 3.3, respectively, by heating of *a*-TbFe₂H_{3.0} at 473 K for 1 h in vacuum. This result indicates that the weakly trapped D atoms in 2Tb + 2Fe sites escape on heating. As a result, N_{D-Fe}

Table 1

Nearest neighbor coordination number, Ni_{i-j} , and interatomic distances, r_1 , in c-TbFe₂D_{3.8} and a-TbFe₂D_x (x = 3.0, 2.0) calculated from the RDF(r)s observed by neutron diffraction

-	D-Fe		D-Tb		Tb-Tb
	N _{D-Fe} (atoms)	<i>r</i> ₁ (nm)	N _{D-Tb} (atoms)	<i>r</i> ₁ (nm)	$N_{\text{D-Fe}} + N_{\text{D-Tb}}$ (atoms)
c-TbFe ₂ D _{3.8}	2.05	0.172	2.01	0.221	4.06
a-TbFe2D3.0	0.98	0.173	3.03	0.223	4.01
a-TbFe ₂ D _{2.0}	0.62	0.172	3.33	0.223	3.95

for a-TbFe₂D_{2.0} is reduced, but N_{D-Tb} for a-TbFe₂D_{2.0} is increased. That is, D (or H) atoms in a-TbFe₂D_x are much more strongly bound than those in the corresponding c-TbFe₂D_x. When c-TbFe₂D_x is heated to the temperature where both Tb and Fe atoms can move over a short distance, at about 0.36 $T_{\rm m}$, rearrangements can occur to reduce the total free energy of the system, which is HIA. BiF₃-type DyH₃ precipitates in the amorphous hydride at about 0.42 $T_{\rm m}$. As the hydrogen pressure increases, the diffusion of hydrogen is generally enhanced which gives rise to a reduction of $T_{\rm p}$. $T_{\rm p}$ for the precipitation of BiF₃-type DyH₃ shows positive (reverse) pressure dependence. Consequently, the precipitation of BiF₃-type DyH₃ may be controlled by the diffusion of Fe atoms that do not interact with hydrogen. The decomposition of the remaining amorphous hydride into α -Fe + DyH₃ is controlled by the long-range diffusion of both Fe and Dy atoms, because it occurs at 0.48 $T_{\rm m}$ where the long-range diffusion of them becomes generally more active.

The present work demonstrates that HIA in DyFe₂ and ErFe₂ occurs above a critical hydrogen pressure. We discuss the reason why HIA does not occur at low hydrogen pressure. The hydrogen content in c-DyFe₂H_x is 1.48, 1.36 and 1.36 (H/M) for 1.0, 0.2 and 0.1 MPa H₂, respectively. Since there is little difference in the hydrogen content, it is considered that the occurrence of HIA is not determined by the hydrogen content, but by the hydrogen pressure. T_p for HIA shows a strong and negative pressure dependence, while that for the precipitation of BiF₃-type DyH₃ shows a weak and positive one. As a consequence of such pressure dependence, HIA overlaps with the precipitation of BiF₃-type DyH₃ at intermediate hydrogen pressure, while c-DyFe₂H_x decomposes directly into α -Fe and BiF₃-type DyH₃ at low hydrogen pressure. Thus, the pressure dependence of HIA and the precipitation of BiF₃-type DyH₃ play an important role in determining whether HIA occurs or does not occur in DyFe₂. The pressure dependence of T_p for HIA may be controlled by short-range diffusion of the Dy and Fe atoms. On the other hand, it is a future subject to determine which atoms control the precipitation of BiH₃-type DyH₃.

4. Summary and conclusion

The pressure dependence of structural changes in the C15 Laves phase DyFe₂ heated in a hydrogen atmosphere between 0.1 and 5.0 MPa H₂ was investigated by PDSC, XRD, Ar-DSC, TEM and hydrogen analyzer and compared with that of ErFe₂ and CeFe₂. Four exothermic reactions, i.e., hydrogen absorption in the crystalline state, HIA, the precipitation of BiF₃-type DyH₃ and the decomposition of the remaining amorphous hydride occurred when DyFe₂ was heated at 0.5 MPa H₂. HIA and the precipitation of DyH₃ occurred simultaneously at 0.2 MPa H₂. The direct decomposition of the amorphous hydride into DyH₃ + α -Fe occurred at 0.1 MPa H₂. As the hydrogen pressure increases, the peak temperature

 $T_{\rm p}$ for hydrogen absorption, HIA, and the decomposition of the amorphous hydride shifted to lower temperatures, but that for the precipitation of DyH₃ shifted slightly to higher temperature. That is, no amorphous hydride is formed at a low hydrogen pressure. The structural changes of DyFe₂ were similar to that of ErFe₂. On the other hand, hydrogen absorption and HIA occurred simultaneously in CeFe₂. The controlling factor for HIA in DyFe₂ was not the hydrogen content, but the hydrogen pressure that has a close relation with the diffusion of metal atoms. The driving force for HIA in C15 Laves phases RFe₂ was considered to be the enthalpy difference resulting from different hydrogen occupation sites as determined by neutron diffraction.

Acknowledgements

This work was supported in part by a "Grant-in-Aid" for Scientific Research on Priority Area a of "New Protium Function" from the Ministry of Education, Culture, Sports, Science and Technology.

References

922.

- [1] X.L. Yeh, K. Samwer, W.L. Johnson, Appl. Phys. Lett. 42 (1983) 242.
- [2] K. Aoki, T. Yamamoto, T. Masumoto, Scr. Metal. 21 (1987) 27.
- [3] L.E. Rehn, P.R. Okamoto, J. Pearson, R. Bhadra, M. Grimsditch, Phys. Rev. Lett. 59 (1987) 2987.
- [4] U.-I. Chung, Y.-G. Lim, J.-Y. Lee, Phil. Mag. B 63 (1991) 1119.
- [5] K. Aoki, T. Masumoto, J. Alloys Compd. 231 (1995) 20.
- [6] A.Y. Yermakov, N.V. Mushnikov, N.K. Zajkov, V.S. Gaviko, V.A. Barinov, Phil. Mag. B 68 (1993) 883.
- [7] K. Aoki, X.G. Li, T. Aihara, T. Masumoto, Mater. Sci. Eng. A 133 (1991) 316.
- [8] S. Luo, J.D. Clewley, T.B. Flanagan, Acta Mater. 44 (1996) 4187.
- [9] K. Aoki, Mater. Sci. Eng. A 304–306 (2001) 45.
- [10] H. Atsumi, M. Hirscher, E.H. Buchler, J. Mossinger, H. Kronmüller, J. Alloys Compd. 231 (1995) 71.
- [11] V. Paul-Boncour, S.M. Filipek, A. Percheron-Guegan, I. Marchuk, J. Pielaszek, J. Alloys Compd. 317–318 (2001) 83.
- [12] M. Dilixiati, K. Kanda, K. Ishikawa, K. Aoki, Mater. Trans. 43 (2002) 1089.
- [13] K. Aoki, K. Mori, T. Masumoto, Mater. Trans. 43 (2002) 2685.
- [14] K. Aoki, M. Dilixiati, K. Ishikawa, J. Alloys Compd. 337 (2002) 128.
- [15] K. Aoki, M. Dilixiati, K. Ishikawa, Mater. Sci Eng. A 375–377 (2004)
- [16] K. Aoki, X.-G. Li, T. Masumoto, Acta Metall. Mater. 40 (1992) 1717.
- [17] K. Ishikawa, N. Ogasawara, K. Aoki, Phil. Mag. Lett. 84 (2004) 207.
- [18] K. Aoki, M. Dilixiati, K. Ishikawa, J. Alloys Compd. 356–357 (2003) 664.
- [19] K. Aoki, M. Dilixiati, K. Ishikawa, Mater. Sci. Eng. A 375–377 (2004) 922.
- [20] H.-W. Li, K. Ishikawa, K. Aoki, J. Alloys Compd. 388 (2004) 49-58.
- [21] K. Itoh, K. Kanda, K. Aoki, T. Fukunaga, J. Alloys Compd. 398 (2003) 167.
- [22] D. Ivey, D. Northwood, J. Less-Common Met. 115 (1986) 23.